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Abstract. We performed a theoretical study of the specific heat C(T ) as a function of the temperature
for double-strand quasiperiodic sequences. To mimic DNA molecules, the sequences are made up from
the nucleotides guanine G, adenine A, cytosine C and thymine T , arranged according to the Fibonacci
and Rudin-Shapiro quasiperiodic sequences. The energy spectra are calculated using the two-dimensional
Schrödinger equation, in a tight-binding approximation, with the on-site energy exhibiting long-range
disorder and non-random hopping amplitudes. We compare the specific heat features of these quasiperiodic
artificial sequences to the spectra considering a segment of the first sequenced human chromosome 22
(Ch22), a real genomic DNA sequence.

PACS. 82.60.Qr Thermodynamics of nanoparticles – 87.14.Gg DNA, RNA – 87.15.Aa Theory and mod-
eling; computer simulation – 89.75.Da Systems obeying scaling laws

1 Introduction

Recently, we have proposed a single-strand DNA sequence
modelling its long and short-range electronic correlations
by a quasiperiodic Rudin-Shapiro sequence [1]. An ap-
pealing motivation for studying these kind of structures
is that they exhibit a highly fragmented energy spectrum
displaying a self-similar pattern. From a strictly mathe-
matical perspective, it has been proven that their spectra
are Cantor sets in the thermodynamic limit [2]. Further-
more, localization of electronic states, one of the most ac-
tive fields in condensed matter physics, could occur not
only in disordered systems but also in the deterministic
quasiperiodic systems [3,4]. Another important issue wor-
thy of attention and so far little explored in quasiperiodic
structures, is the connection between the scale invariance
of their energy spectra and their thermodynamic proper-
ties.

The DNA molecule is often described as a one-
dimensional random chain, being defined as a sequence
of four possible nucleotides which shapes the structure
of the amino acids to form proteins. Its sequence can be
considered as a symbolic arrangement of a four letter al-
phabet, namely guanine (G), adenine (A), cytosine (C)
and thymine (T ), and nothing prevents that the DNA
chain can be grown following quasiperiodic sequences as,
for instance, the Fibonacci and Rudin-Shapiro ones. Un-
like proteins, a π-stacked array of DNA base pairs made
up from these nucleotides can provide the way to pro-
mote long range charge migration, which in turn gives
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important clues to mechanisms and biological functions
of transport [5].

Simplified fractals based in the Cantor [6,7], as well as
the critical attractor of the logistic and circle maps at the
onset of chaos [8–10], have been used recently to model the
energy spectrum of quasiperiodic systems. The thermody-
namic behavior derived from such self-similar spectra dis-
play some anomalous features, with the most prominent
one being related to the emergence of log-periodic oscilla-
tions in the low-temperature behavior of the specific heat.
A series of recent works looking for connections with the
quasiperiodic aspects of these spectra (scaling laws, frac-
tal dimension, etc.), as well as for some kind of common
behavior in the specific heat spectra, have shown, among
other things, that the average low-temperature specific
heat is intimately connected with some underlying frac-
tal dimension characterizing the energy spectrum [11].

The unique structure of DNA also allows various al-
terations of its material properties, which could modify
its electrical, optical, and thermodynamic properties, re-
vealing additional features. Early theoretical and exper-
imental works on the low-temperature heat capacity of
DNA primarily took into account the phonon contribu-
tions, specifically the redundant low-energy density of the
vibrational states, concluding that the low-energy of the
DNA is not unique among biopolymers, and that its spe-
cific heat possesses a combination of the properties simi-
lar to those of glasses and other disordered materials (see
Refs. [12–14] among them). Another important issue con-
cerns the relationship between the low-temperature ther-
modynamic properties and the multi-fractal character of
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the energy spectra of a sequence dependent double strand
DNA molecules. More specifically, what happens to the
specific heat spectra profile in these cases? Does it present
log-periodic oscillations as a function of the temperature T
in the low temperature region, around a mean value given
by a characteristic dimension of the energy spectrum? The
answers for these and other questions are the main pur-
poses of this paper, which is structured as follows: we
present in Section 2 our theoretical model based on an
electronic tight-binding Hamiltonian suitable to describe
a double-strand of DNA segments with pure diagonal cor-
related disorder modelled by the quasiperiodic chain of
Fibonacci (FB) and Rudin-Shapiro (RS) type. For com-
parison, we have also calculated the electronic energy spec-
tra of the first sequenced human chromosome 22 (Ch22),
a real genomic DNA sequence. Section 3 deals with the
specific heat profiles associated to the electronic energy
spectra described in Section 2. Finally, the conclusions of
this work are summarized in Section 4.

2 Energy spectra

Our Hamiltonian is an effective tight-binding model de-
scribing one electron moving in a ladder geometry, com-
posed by two interconnected chains of sites, side by side,
with a single orbital per site and nearest-neighbor inter-
actions (see Fig. 1). The corresponding time dependent
Schrödinger equation is given by (� = 1):

t(ψα
n+1 + ψα

n−1) + wψβ
n = (E − εαn)ψα

n ,

t(ψβ
n+1 + ψβ

n−1) + wψα
n = (E − εβn)ψβ

n . (1)

Here εαn is the single energy at the orbital ψα
n (the upper

index refers to the chain, while the lower index refers to
the site position in each chain). Also t and w are the intra-
chain and the inter-chain first-neighbor electronic overlaps
(hopping amplitude), respectively.

Within this framework, the (discrete) Schrödinger
equation can be written as

⎛
⎜⎜⎝
ψα

n+1

ψβ
n+1
ψα

n

ψβ
n

⎞
⎟⎟⎠ = M(n)

⎛
⎜⎜⎝

ψα
n

ψβ
n

ψα
n−1

ψβ
n−1

⎞
⎟⎟⎠ , (2)

where M(n) is the transfer matrix
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After successive applications of the transfer matrix M(n),
we have
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In this way we have the wave function at arbitrary site.
Calculating this product of transfer matrices is completely
equivalent to solve the Schrödinger equation for the sys-
tem.

Defining the ket formed by the the orbitals of the Nth
unitary cell, i.e.:

|ψ(N)〉 =

⎛
⎜⎜⎝

ψα
N+1

ψβ
N+1

ψα
N

ψβ
N

⎞
⎟⎟⎠ , (5)

and taking into account that in our model, each generated
sequence is an unitary cell whose repetition builds up the
entire DNA molecule, Bloch’s ansatz for each chain yields:

|ψ(N+1)〉 = T |ψ(N)〉 = exp (iQiL)|ψ(N)〉, (6)

with Qi being Bloch’s wavevector and L the periodic dis-
tance. Therefore,

[T − exp (iQiL)I]|ψ(N)〉 = 0, (7)

where I is the identity matrix. Since T is an unimod-
ular matrix (detT = 1), its eigenvalue should satisfy
λ1λ2λ3λ4 = 1, i.e., λ2 = λ−1

1 and λ4 = λ−1
3 , implying

the existence of only two independent eigenvalues. There-
fore Bloch’s wavevector should satisfy

exp (iQrL) = λr, r = 1, 2. (8)

The secular equation is then:

λ4 +Ξλ3 + Γλ2 +Ξλ+ 1 = 0, (9)

whereΞ = −Tr[T ] (Tr meaning the trace of the matrix T )
and

Γ = (T11 + T22)(T33 + T44) − T34T43 − T12T21 − T13T31

− T14T41 − T23T32 − T24T42 + T11T22 + T33T44.
(10)

Here Tij are the elements of the matrix T . Rearranging
equation (9), we have:

γ2 +Ξγ + Γ − 2 = 0. (11)

Here γi = (λi + λ−1
i ), are the roots of the second-order

degree equation, each one corresponding to one of the in-
dependent eigenvalues of the matrix T . Its explicit form
is:

γ1,2 =
−Ξ ± √

Ξ2 − 4(Γ − 2)
2

. (12)

For the DNA sequence of the first sequenced human chro-
mosome 22 (Ch22), entitled NT011520, the numbers of let-
ters of this sequence is about 3.4 × 106 nucleotides. This
sequence was retrieved from the internet page of the Na-
tional Center of Biotechnology Information. The energies
εn are chosen from the ionization potential of the respec-
tive bases [15], i.e., εA = 8.24, εT = 9.14, εC = 8.87, and
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Fig. 1. Schematic representation of a double-strand DNA molecule, showing the intra-chain (t) and the inter-chain (w) first-
neighbor hopping terms.

εG = 7.75, all units in eV, representing the adenine, gua-
nine, thymine, and cytosine molecules, respectively. The
hopping term t among the bases were taken equal to 1 eV,
since theoretical calculations using ab initio methods yield
for this potential values in the range 0.4–1 eV [16,17]. The
hopping potential w due to the hydrogen bonds linking the
two strands is considered to be 0.1 eV.

The quasiperiodic Fibonacci sequence belongs to the
family of the so-called substitutional sequences, which are
characterized by the nature of their Fourier spectrum. It
exhibits a dense pure point Fourier measure, character-
istic of a true quasicrystal-like structure (for a review of
the physical properties of these and others quasiperiodic
structures see Ref. [18]). It can be constructed starting
from a G (guanine) nucleotide as seed and following the
inflation rule G → GC, C → G. The sequence produced
by this method is then utilized to fill one line in our matrix
representative of DNA (see Fig. 1); the other one is filled
according to the complemental base pairs rules: A−T and
G− C.

On the other hand, the quasiperiodic Rudin-Shapiro
structure, which belongs also to the family of the so-called
substitutional sequences, displays an absolutely continu-
ous Fourier measure, a property which it shares with the
random sequences [19]. Starting, as in the Fibonacci case,
from a G (guanine) nucleotide as seed, it can be built
through the inflation rules G→ GC, C → GA, A→ TC,
and T → TA, using also the same complemental base
pairs rules A− T and G− C, as in the Fibonacci case.

In all structures above described modelling the DNA
molecule, the presence of long range correlations avoids
canonical approaches like perturbation theory, where one
first separates a small localized piece of the system, treat-
ing the rest as perturbation a posteriori. This approach
does not work in our cases, because the behavior of the
macroscopic system is completely distinct of the behavior
of its separated small piece, due to the long range correla-
tions. Fortunately, the presence of long range correlations
itself gives the key to circumvent this difficulty: normally
these systems are very robust to wide modifications on a
microscopic scale. The important consequence of this ro-
bustness, i.e., many systems which are distinct within a
microscopic scale presenting the same critical behavior, is
that one can thus classify the various systems in a few
universality classes. Further, it is worthy to mention here
that the finite sampling sizes we will consider in the fol-
lowing study of the thermodynamics properties are large
enough to achieve the scaling behavior of the multifractal
spectrum.

With the intention of comparing these quasiperiodic
sequences with the genomic one, we assume also that the
energies εn take the values εG, εA, εC , and εT , as in the
DNA genomic sequence, with the same numerical values.

Figure 2 shows the electron energy spectra, as mea-
sured by their equivalent bandwidth ∆ (the sum of all
allowed energy regions in the band structures), for the
Fibonacci (Fig. 2a) and the Rudin-Shapiro (Fig. 2b)
quasiperiodic sequences, as well as for the genomic DNA
(Fig. 2c), respectively, up to the number of nucleotides n
equal to 93. This is nothing but the Lebesgue measure of
the energy spectrum. From there, one can infer the forbid-
den and allowed energies as a function of the number of
nucleotides n. Notice that, as expected, as n increases the
allowed band regions get narrower and narrower, as an in-
dication of more localized modes. We have also investigate
their multifractal behavior which is, in general, a com-
mon property of strange attractors in nonlinear systems
[20]. In order to characterize these objects, it is convenient
to introduce the function f(α), known as the multifrac-
tal spectrum or the spectrum of scaling indices. Loosely,
one may think of the multifractal as an interwoven set of
fractals of different dimensions f(α), where α is a mea-
sure of their relative strength [21]. The formalism relies
on the fact that highly nonuniform probability distribu-
tions arise from the nonuniformity of the system. Usu-
ally, the singularity spectrum has a parabolic-like shape,
distributed in a finite range [αmin, αmax], which are the
minimum and maximum singularity strengths of the in-
tensity measure, respectively. They correspond also to the
exponents governing the scaling behavior in the most con-
centrated and rarefied regions of the attractor. The value
of the ∆α = αmax − αmin may be used as a parameter
to measure the degree of randomness of the band width
distribution. Summarizing, we found:

(a) for the quasiperiodic Fibonacci sequence, we have
αmin = 0.835 and αmax = 1.858 (∆α = 1.023);

(b) for the quasiperiodic Rudin Shapiro sequence, we have
αmin = 0.743 and αmax = 3.821 (∆α = 3.078);

(c) for the human chromosome 22 (Ch22) DNA chain, we
have αmin = 0.414 and αmax = 3.612 (∆α = 3.198).

From the above, we can infer that regarding the degree of
randomness of the band width distribution for each struc-
ture, the RS sequence is more close related to the Ch22
structure than the FB one.

We now turn to the specific heat’s calculation, con-
sidering the above described energy spectra, which is the
topic of the next section.
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Fig. 2. Energy spectra for (a) Fibonacci DNA chain; (b)
Rudin-Shapiro DNA chain; (c) human chromosome 22 (Ch22)
DNA chain.

3 Specific heat spectra

We address now the specific heat obtained from the spec-
tra shown in Figure 2. The description below, which fol-
lows the lines of reference [22], is general and has been
successfully applied to many other banded spectra. In Fig-
ure 2 each spectrum, for a fixed number of nucleotides n,
has m allowed continuous bands. We consider the level
density within each band to be constant. The partition
function for n nucleotides spectrum, using a Maxwell-
Boltzmann statistics is given by

Zn =
∫ ∞

0

ρ(ε)e−βεdε. (13)

Here β = 1/T (by choosing the Boltzmann’s constant
kB = 1), and we take the density of states ρ(ε) = 1. We
justify the use of a classical Maxwell-Boltzmann statistics
because for fermions, as it was already discussed [23,24],
the classical scenario survives the inclusion of a more
appropriate quantum Fermi-Dirac statistics. Besides, the
specific heat in this regime does not vanishes at low tem-
peratures but instead oscillates log-periodically, whose
pattern is the main focus of this work.

After a straightforward calculation we can write Zn as

Zn =
1
β

2m−1∑
i=1,3,...

e−βεi[1 − e−β∆i ]. (14)

Here the subscript n is related with the number of nu-
cleotides, m is the number of allowed bands, and ∆i =
εi+1 − εi is the difference between the top and bottom en-
ergy levels of each band. The specific heat is then given
by

Cn(T ) =
∂

∂T

[
T 2∂ lnZn

∂T

]
, (15)

which can be written as

Cn(T ) = 1 +
βfn

Zn
− g2

n

Z2
n

. (16)

Here

fn =
2m−1∑

i=1,3,...

[ε2i e
−βεi − ε2i+1e

−βεi+1 ], (17)

and

gn =
2m−1∑

i=1,3,...

[εie−βεi − εi+1e
−βεi+1]. (18)

Therefore, once we know the electronic energy spectra of a
given DNA chain, we can determine the associated specific
heat by using (16).

Figure 3a shows the electronic specific heat spectra
for the Fibonacci DNA chains, corresponding to its 10th
(number of nucleotides n = 89), 11th (number of nu-
cleotides n = 144), 12th (number of nucleotides n = 233),
and 13th (number of nucleotides n = 377) generation
numbers, as a function of the temperature. For the high-
temperature limit (T → ∞), the specific heat for all cases
converges and decays as T−2. This is a consequence of
the existence of a maximum energy value in the spectrum
(once the spectrum is bounded). As the temperature de-
creases, the specific heat increases up to a maximum value.
The corresponding temperature for this maximum value
depends on the number of nucleotides n, although one can
see a clear tendency for a common temperature value as n
increases. After the maximum value, the specific heat falls
into the low temperature region. In this region it starts
to present a non-harmonic small oscillation behavior, as
shown in the inset of Figure 3a. This can be interpreted
as a superposition of Schottky anomalies corresponding
to the scales of the energy spectrum. Furthermore, the
profiles of these oscillations define clearly two classes of
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Fig. 3. (a) Specific heat (in units of kB) versus temperature (in units of ∆, the sum of all allowed energy regions in the
band structures) for the Fibonacci DNA chain. The inset shows the low-temperature behavior of the specific heat. (b) Log-
periodic behavior of the specific heat for the even (6th, 8th, 10th, and 12th generation, respectively) Fibonacci DNA chain. (c)
Log-periodic behavior of the specific heat for the odd (5th, 7th, 9th, 11th, and 13th generation, respectively) Fibonacci DNA
chain.

oscillations, as far as the parity (even or odd) of the gen-
eration number of the Fibonacci sequence is concern, with
the amplitude of the even oscillations being bigger than
the amplitude of the odd ones. These behaviors are better
illustrated in Figures 3b and 3c, where are depicted log-
plots of the specific heat against the temperature, showing
clearly a log-periodic behavior, i.e., Cn(T ) = ACn(aT ),
where A is a constant, and a an arbitrary number. The
mean value d, around it C(T ) oscillates log-periodically,
can be given approximately by the so-called spectral di-
mension (the exponent of a power law fit of the integrated
density of states), associated to the minimum singular-
ity exponent α in the multifractal curve f(α), namely
αmin = 0.835. Of course, the number of oscillations ob-
served in the specific heat spectra is related to the number
of nucleotides n, once n depends on the hierarchical gener-
ation of the Fibonacci sequence (more oscillations appear
as n increases).

A different scenario appears when one consider the
other quasiperiodic structure studied here (i.e., modelling
the DNA molecule by the RS sequence), which is depicted
in Figure 4. Similarly to the Fibonacci case, in the limit
when T → ∞, the specific heat goes to zero as T−2 for
all values of n. Also there are oscillations in the region
near to T → 0 (which are better shown by the inset of
the figure). Although these oscillations can be interpreted
as Schottky anomalies, as in the Fibonacci case, they do
not have the same standard of behavior, i.e., two groups
of oscillations corresponding to even and odd generation
numbers of the sequence. Additional differences should be
pointed out. In this case there are oscillations with ampli-
tude very superior to those found in the Fibonacci case.
More important, the log-plot does not show a log-periodic
behavior. Instead, it shows an erratic-like profile, which
can be attributed to the more disordered structure of the
Rudin-Shapiro sequence. Therefore, apart of the common
asymptotic behavior of the specific heat when T → ∞
and T → 0, there is no other connection between the Fi-
bonacci and Rudin-Shapiro DNA chains considered here,
regarding their specific heat spectra.

Fig. 4. Specific heat (in units of kB) versus temperature (in
units of ∆, the sum of all allowed energy regions in the band
structures) for the Rudin-Shapiro DNA chain, corresponding
to its 8th (number of nucleotides n = 128), 9th (number of
nucleotides n = 256), and 10th (number of nucleotides n =
512) generation number. The inset shows the low-temperature
behavior of the specific heat.

Finally, for comparison purposes, we present in Fig-
ure 5 the specific heat behavior of the human chromo-
some Ch22 chain. As in the two previous cases, in the
limit when T → ∞, the specific heat goes to zero as T−2

and also there are oscillations in the low temperature re-
gion due to Schottky anomalies (which are better shown
by the inset of the figure). One can see clearly that the
overall behavior of the specific heat of Ch22 DNA chains is
very close to the specific heat of the Rudin-Shapiro one, in
contrast with the Fibonacci case. For example, Ch22 and
Rudin-Shapiro specific heats both present similar ampli-
tude of oscillations, as well as an erratic-like behavior in
their log-plots, instead of the log-periodic behavior found
in the Fibonacci case.

Before concluding, let us comment on a possible
connection between the present work with those of
Mrevlishvili and collaborators [13,14]. Their experimen-
tal results show oscillations of the specific heat at low
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Fig. 5. Specific heat (in units of kB) versus temperature (in
units of ∆, the sum of all allowed energy regions in the band
structures) for the Ch22 DNA chain, corresponding to the
number of nucleotides n = 128, 256, and 512. The inset shows
the low-temperature behavior of the specific heat.

temperature, which are qualitatively similar to our present
numerical theoretical results. They attribute their results
to the non-crystalline order of the DNA samples which
may be modelled, as we have shown in this article, by
quasiperiodic systems.

4 Conclusions

In summary, we have studied the thermodynamical
properties of long-range correlated double strand DNA
molecules. More specifically, we have performed a theo-
retical study of the electronic specific heat behavior of
DNA chains modelled by the quasiperiodic Fibonacci and
Rudin-Shapiro sequences, aiming to further contribute to
the present understanding of the role played by correla-
tions on the electronic properties of DNA segments.

Our numerical results show that the specific heat
for all cases, in the high-temperature limit (T → ∞),
converges and decays as T−2 (once the spectra are
bounded). Other general feature of these systems is
the oscillatory behavior of the specific heat in the low
temperature regime. However, the low temperature
behavior strongly depends on the sequence applied in
the construction of the system. For the Fibonacci DNA
chains there is a parity even-odd of the specific heat
oscillations, while for the Rudin-Shapiro one, no parity
emerges from the specific heat oscillations. Besides, a
well defined log-periodicity was found for the Fibonacci
specific heat profile, while an erratic log-plot behavior is
the main signature of the Rudin-Shapiro case. In order
to unreveal the actual relevance of long range correlations,

which is a kind of signature of the quasiperiodic sequences,
we compared the specific heat spectra considering seg-
ments of the Ch22 human chromosome with those result-
ing from the quasiperiodic sequences, with a remarkable
agreement with the Rudin-Shapiro one.
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